Back
//******************************************************************************
// MSP430F54x Demo - ADC12, Repeated Single Channel Conversions
//
// Description: This example shows how to perform repeated conversions on a
// single channel using "repeat-single-channel" mode. AVcc is used for the
// reference and repeated conversions are performed on Channel A0. Each
// conversion result is moved to an 8-element array called results[]. Test by
// applying a voltage to channel A0, then running. Open a watch window in
// debugger and view the results. Set Breakpoint1 in the index increment line
// to see the array value change sequentially and Breakpoint to see the entire
// array of conversion results in "results[]" for the specified Num_of_Results.
// This can run even in LPM4 mode as ADC has its own clock
//
// MSP430F5438
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// Vin -->|P6.0/A0 |
// | |
//
//
// M Smertneck / W. Goh
// Texas Instruments Inc.
// September 2008
// Built with CCE Version: 3.2.2 and IAR Embedded Workbench Version: 4.11B
//******************************************************************************
#include "msp430x54x.h"
#define Num_of_Results 8
volatile unsigned int results[Num_of_Results];
// Needs to be global in this
// example. Otherwise, the
// compiler removes it because it
// is not used for anything.
void main(void)
{
WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer
P6SEL |= 0x01; // Enable A/D channel A0
ADC12CTL0 = ADC12ON+ADC12SHT0_8+ADC12MSC; // Turn on ADC12, set sampling time
// set multiple sample conversion
ADC12CTL1 = ADC12SHP+ADC12CONSEQ_2; // Use sampling timer, set mode
ADC12IE = 0x01; // Enable ADC12IFG.0
ADC12CTL0 |= ADC12ENC; // Enable conversions
ADC12CTL0 |= ADC12SC; // Start conversion
__bis_SR_register(LPM4_bits + GIE); // Enter LPM4, Enable interrupts
__no_operation(); // For debugger
}
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR (void)
{
static unsigned char index = 0;
switch(__even_in_range(ADC12IV,34))
{
case 0: break; // Vector 0: No interrupt
case 2: break; // Vector 2: ADC overflow
case 4: break; // Vector 4: ADC timing overflow
case 6: // Vector 6: ADC12IFG0
results[index] = ADC12MEM0; // Move results
index++; // Increment results index, modulo; Set Breakpoint1 here
if (index == 8)
{
index = 0;
}
case 8: break; // Vector 8: ADC12IFG1
case 10: break; // Vector 10: ADC12IFG2
case 12: break; // Vector 12: ADC12IFG3
case 14: break; // Vector 14: ADC12IFG4
case 16: break; // Vector 16: ADC12IFG5
case 18: break; // Vector 18: ADC12IFG6
case 20: break; // Vector 20: ADC12IFG7
case 22: break; // Vector 22: ADC12IFG8
case 24: break; // Vector 24: ADC12IFG9
case 26: break; // Vector 26: ADC12IFG10
case 28: break; // Vector 28: ADC12IFG11
case 30: break; // Vector 30: ADC12IFG12
case 32: break; // Vector 32: ADC12IFG13
case 34: break; // Vector 34: ADC12IFG14
default: break;
}
}
|