Back
//******************************************************************************
// MSP430F54x Demo - ADC12, Repeated Sequence of Conversions
//
// Description: This example shows how to perform a repeated sequence of
// conversions using "repeat sequence-of-channels" mode. AVcc is used for the
// reference and repeated sequence of conversions is performed on Channels A0,
// A1, A2, and A3. Each conversion result is stored in ADC12MEM0, ADC12MEM1,
// ADC12MEM2, and ADC12MEM3 respectively. After each sequence, the 4 conversion
// results are moved to A0results[], A1results[], A2results[], and A3results[].
// Test by applying voltages to channels A0 - A3. Open a watch window in
// debugger and view the results. Set Breakpoint1 in the index increment line
// to see the array values change sequentially and Breakpoint2 to see the entire
// array of conversion results in A0results[], A1results[], A2results[], and
// A3results[]for the specified Num_of_Results.
//
// Note that a sequence has no restrictions on which channels are converted.
// For example, a valid sequence could be A0, A3, A2, A4, A2, A1, A0, and A7.
// See the MSP430x1xx User's Guide for instructions on using the ADC12.
//
// MSP430F5438
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// Vin0 -->|P6.0/A0 |
// Vin1 -->|P6.1/A1 |
// Vin2 -->|P6.2/A2 |
// Vin3 -->|P6.3/A3 |
// | |
//
// M Smertneck / W. Goh
// Texas Instruments Inc.
// September 2008
// Built with CCE Version: 3.2.2 and IAR Embedded Workbench Version: 4.11B
//******************************************************************************
#include "msp430x54x.h"
#define Num_of_Results 8
volatile unsigned int A0results[Num_of_Results];
volatile unsigned int A1results[Num_of_Results];
volatile unsigned int A2results[Num_of_Results];
volatile unsigned int A3results[Num_of_Results];
void main(void)
{
WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer
P6SEL = 0x0F; // Enable A/D channel inputs
ADC12CTL0 = ADC12ON+ADC12MSC+ADC12SHT0_8; // Turn on ADC12, extend sampling time
// to avoid overflow of results
ADC12CTL1 = ADC12SHP+ADC12CONSEQ_3; // Use sampling timer, repeated sequence
ADC12MCTL0 = ADC12INCH_0; // ref+=AVcc, channel = A0
ADC12MCTL1 = ADC12INCH_1; // ref+=AVcc, channel = A1
ADC12MCTL2 = ADC12INCH_2; // ref+=AVcc, channel = A2
ADC12MCTL3 = ADC12INCH_3+ADC12EOS; // ref+=AVcc, channel = A3, end seq.
ADC12IE = 0x08; // Enable ADC12IFG.3
ADC12CTL0 |= ADC12ENC; // Enable conversions
ADC12CTL0 |= ADC12SC; // Start convn - software trigger
__bis_SR_register(LPM0_bits + GIE); // Enter LPM0, Enable interrupts
__no_operation(); // For debugger
}
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR (void)
{
static unsigned int index = 0;
switch(__even_in_range(ADC12IV,34))
{
case 0: break; // Vector 0: No interrupt
case 2: break; // Vector 2: ADC overflow
case 4: break; // Vector 4: ADC timing overflow
case 6: break; // Vector 6: ADC12IFG0
case 8: break; // Vector 8: ADC12IFG1
case 10: break; // Vector 10: ADC12IFG2
case 12: // Vector 12: ADC12IFG3
A0results[index] = ADC12MEM0; // Move A0 results, IFG is cleared
A1results[index] = ADC12MEM1; // Move A1 results, IFG is cleared
A2results[index] = ADC12MEM2; // Move A2 results, IFG is cleared
A3results[index] = ADC12MEM3; // Move A3 results, IFG is cleared
index++; // Increment results index, modulo; Set Breakpoint1 here
if (index == 8)
{
(index = 0);
}
case 14: break; // Vector 14: ADC12IFG4
case 16: break; // Vector 16: ADC12IFG5
case 18: break; // Vector 18: ADC12IFG6
case 20: break; // Vector 20: ADC12IFG7
case 22: break; // Vector 22: ADC12IFG8
case 24: break; // Vector 24: ADC12IFG9
case 26: break; // Vector 26: ADC12IFG10
case 28: break; // Vector 28: ADC12IFG11
case 30: break; // Vector 30: ADC12IFG12
case 32: break; // Vector 32: ADC12IFG13
case 34: break; // Vector 34: ADC12IFG14
default: break;
}
}
|