Back

//******************************************************************************
//   MSP430F54x Demo - ADC12, Sample A0, Set P1.0 if A0 > 0.5*AVcc
//
//   Description: A single sample is made on A0 with reference to AVcc.
//   Software sets ADC12SC to start sample and conversion - ADC12SC
//   automatically cleared at EOC. ADC12 internal oscillator times sample (16x)
//   and conversion. In Mainloop MSP430 waits in LPM0 to save power until ADC12
//   conversion complete, ADC12_ISR will force exit from LPM0 in Mainloop on
//   reti. If A0 > 0.5*AVcc, P1.0 set, else reset.
//
//                MSP430F5438
//             -----------------
//         /|\|                 |
//          | |                 |
//          --|RST              |
//            |                 |
//     Vin -->|P6.0/A0      P1.0|--> LED
//
//   M Smertneck / W. Goh
//   Texas Instruments Inc.
//   September 2008
//   Built with CCE Version: 3.2.2 and IAR Embedded Workbench Version: 4.11B
//******************************************************************************

#include "msp430x54x.h"

void main(void)
{
  WDTCTL = WDTPW + WDTHOLD;                 // Stop WDT
  ADC12CTL0 = ADC12SHT02 + ADC12ON;         // Sampling time, ADC12 on
  ADC12CTL1 = ADC12SHP;                     // Use sampling timer
  ADC12IE = 0x01;                           // Enable interrupt
  ADC12CTL0 |= ADC12ENC;
  P6SEL |= 0x01;                            // P6.0 ADC option select
  P1DIR |= 0x01;                            // P1.0 output

  while (1)
  {
    ADC12CTL0 |= ADC12SC;                   // Start sampling/conversion

    __bis_SR_register(LPM0_bits + GIE);     // LPM0, ADC12_ISR will force exit
    __no_operation();                       // For debugger
  }
}

#pragma vector = ADC12_VECTOR
__interrupt void ADC12_ISR(void)
{
  switch(__even_in_range(ADC12IV,34))
  {
  case  0: break;                           // Vector  0:  No interrupt
  case  2: break;                           // Vector  2:  ADC overflow
  case  4: break;                           // Vector  4:  ADC timing overflow
  case  6:                                  // Vector  6:  ADC12IFG0
    if (ADC12MEM0 >= 0x7ff)                 // ADC12MEM = A0 > 0.5AVcc?
      P1OUT |= BIT0;                        // P1.0 = 1
    else
      P1OUT &= ~BIT0;                       // P1.0 = 0

    __bic_SR_register_on_exit(LPM0_bits);   // Exit active CPU
  case  8: break;                           // Vector  8:  ADC12IFG1
  case 10: break;                           // Vector 10:  ADC12IFG2
  case 12: break;                           // Vector 12:  ADC12IFG3
  case 14: break;                           // Vector 14:  ADC12IFG4
  case 16: break;                           // Vector 16:  ADC12IFG5
  case 18: break;                           // Vector 18:  ADC12IFG6
  case 20: break;                           // Vector 20:  ADC12IFG7
  case 22: break;                           // Vector 22:  ADC12IFG8
  case 24: break;                           // Vector 24:  ADC12IFG9
  case 26: break;                           // Vector 26:  ADC12IFG10
  case 28: break;                           // Vector 28:  ADC12IFG11
  case 30: break;                           // Vector 30:  ADC12IFG12
  case 32: break;                           // Vector 32:  ADC12IFG13
  case 34: break;                           // Vector 34:  ADC12IFG14
  default: break;
  }
}