Back
//******************************************************************************
// MSP430F22x4 Demo - ADC10, DTC Sample A0 2-Blk Cont. Mode, AVcc, HF XTAL
//
// Description: For non-low power applications HF XTAL can source ACLK and be
// used also for CPU MCLK, as in this example. DTC always uses MCLK for data
// transfer. Though not required, ADC10 can also clock from HF XTAL as in this
// example using MCLK.
// MCLK = ACLK = ADC10CLK = HF XTAL in this example.
// DTC used to sample A0 with reference to AVcc. Software writes once to
// ADC10SC to trigger continous sampling. DTC configured to transfer code
// into two 16-word blocks at RAM 200h - 240h. Mainloop jumps to itself.
// MCLK times sample period (8x) and conversion (13x). For demostration
// puspose, ADC10_ISR(DTC) used to set P1.1 at completion of first block
// transfer, reset at completion of second block transfer. Toggle rate on P1.1
// is then calculated as MCLK/(21*16*2)
// //* HF XTAL NOT INSTALLED ON FET *//
// //* Min Vcc required varies with MCLK frequency - refer to datasheet *//
//
// MSP430F22x4
// -----------------
// /|\| XIN|-
// | | | HF XTAL (3 16MHz crystal or resonator)
// --|RST XOUT|-
// | |
// >---|P2.0/A0 P1.1|-->MCLK/672
//
// A. Dannenberg
// Texas Instruments Inc.
// April 2006
// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.41A
//******************************************************************************
#include "msp430x22x4.h"
volatile unsigned int i;
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
BCSCTL1 |= XTS; // LFXT1 = HF XTAL
BCSCTL3 |= LFXT1S1; // LFXT1S1 = 3-16Mhz
do
{
IFG1 &= ~OFIFG; // Clear OSC fault flag
i = 0xFF; // i = Delay
while (i--); // Additional delay to ensure start
}
while (OFIFG & IFG1); // OSC fault flag set?
BCSCTL2 |= SELM_3; // MCLK = LFXT1
ADC10CTL1 = ADC10SSEL_2 + CONSEQ_2;
ADC10CTL0 = ADC10SHT_1 + MSC + ADC10ON + ADC10IE;
ADC10AE0 |= 0x01; // P2.0 ADC option select
ADC10DTC0 |= ADC10TB + ADC10CT; // Continous two block transfers
ADC10DTC1 = 0x010; // 16*2 conversions
P1DIR |= 0x02; // P1.1 output
ADC10SA = 0x0200; // Data buffer start
ADC10CTL0 |= ENC + ADC10SC; // Start sampling continously
__enable_interrupt(); // Enable interrupts
while(1); // Do nothing (and keep MCLK alive)
}
#pragma vector = ADC10_VECTOR
__interrupt void ADC10_ISR(void)
{
if (ADC10DTC0 & ADC10B1)
P1OUT &= ~0x002; // P1.1 = 0
else
P1OUT |= 0x002; // P1.1 = 1
}
|