Back
//******************************************************************************
// MSP430F20xx Demo - I2C Master Transmitter, single byte
//
// Description: I2C Master communicates with I2C Slave using
// the USI. Master data is sent and increments from 0x00 with each transmitted
// byte which is verified by the slave.
// LED off for address or data Ack; LED on for address or data NAck.
// ACLK = n/a, MCLK = SMCLK = Calibrated 1MHz
//
// ***THIS IS THE MASTER CODE***
//
// Slave Master
// (msp430x20x3_usi_08.c)
// MSP430F20x2/3 MSP430F20x2/3
// ----------------- -----------------
// /|\| XIN|- /|\| XIN|-
// | | | | | |
// --|RST XOUT|- --|RST XOUT|-
// | | | |
// LED <-|P1.0 | | |
// | | | P1.0|-> LED
// | SDA/P1.7|<-------|P1.7/SDA |
// | SCL/P1.6|<-------|P1.6/SCL |
//
// Note: internal pull-ups are used in this example for SDA & SCL
//
// Z. Albus
// Texas Instruments Inc.
// May 2006
// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.41A
//******************************************************************************
#include <msp430x20x2.h>
char MST_Data = 0; // Variable for transmitted data
char SLV_Addr = 0x90; // Address is 0x48 << 1 bit + 0 for Write
int I2C_State = 0; // State variable
void main(void)
{
volatile unsigned int i; // Use volatile to prevent removal
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog
if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
{
while(1); // If calibration constants erased
// do not load, trap CPU!!
}
BCSCTL1 = CALBC1_1MHZ; // Set DCO
DCOCTL = CALDCO_1MHZ;
P1OUT = 0xC0; // P1.6 & P1.7 Pullups, others to 0
P1REN |= 0xC0; // P1.6 & P1.7 Pullups
P1DIR = 0xFF; // Unused pins as outputs
P2OUT = 0;
P2DIR = 0xFF;
USICTL0 = USIPE6+USIPE7+USIMST+USISWRST; // Port & USI mode setup
USICTL1 = USII2C+USIIE; // Enable I2C mode & USI interrupt
USICKCTL = USIDIV_3+USISSEL_2+USICKPL; // Setup USI clocks: SCL = SMCLK/8 (~125kHz)
USICNT |= USIIFGCC; // Disable automatic clear control
USICTL0 &= ~USISWRST; // Enable USI
USICTL1 &= ~USIIFG; // Clear pending flag
_EINT();
while(1)
{
USICTL1 |= USIIFG; // Set flag and start communication
LPM0; // CPU off, await USI interrupt
_NOP(); // Used for IAR
for (i = 0; i < 5000; i++); // Dummy delay between communication cycles
}
}
/******************************************************
// USI interrupt service routine
******************************************************/
#pragma vector = USI_VECTOR
__interrupt void USI_TXRX (void)
{
switch(I2C_State)
{
case 0: // Generate Start Condition & send address to slave
P1OUT |= 0x01; // LED on: sequence start
USISRL = 0x00; // Generate Start Condition...
USICTL0 |= USIGE+USIOE;
USICTL0 &= ~USIGE;
USISRL = SLV_Addr; // ... and transmit address, R/W = 0
USICNT = (USICNT & 0xE0) + 0x08; // Bit counter = 8, TX Address
I2C_State = 2; // Go to next state: receive address (N)Ack
break;
case 2: // Receive Address Ack/Nack bit
USICTL0 &= ~USIOE; // SDA = input
USICNT |= 0x01; // Bit counter = 1, receive (N)Ack bit
I2C_State = 4; // Go to next state: check (N)Ack
break;
case 4: // Process Address Ack/Nack & handle data TX
USICTL0 |= USIOE; // SDA = output
if (USISRL & 0x01) // If Nack received...
{ // Send stop...
USISRL = 0x00;
USICNT |= 0x01; // Bit counter = 1, SCL high, SDA low
I2C_State = 10; // Go to next state: generate Stop
P1OUT |= 0x01; // Turn on LED: error
}
else
{ // Ack received, TX data to slave...
USISRL = MST_Data; // Load data byte
USICNT |= 0x08; // Bit counter = 8, start TX
I2C_State = 6; // Go to next state: receive data (N)Ack
P1OUT &= ~0x01; // Turn off LED
}
break;
case 6: // Receive Data Ack/Nack bit
USICTL0 &= ~USIOE; // SDA = input
USICNT |= 0x01; // Bit counter = 1, receive (N)Ack bit
I2C_State = 8; // Go to next state: check (N)Ack
break;
case 8: // Process Data Ack/Nack & send Stop
USICTL0 |= USIOE;
if (USISRL & 0x01) // If Nack received...
P1OUT |= 0x01; // Turn on LED: error
else // Ack received
{
MST_Data++; // Increment Master data
P1OUT &= ~0x01; // Turn off LED
}
// Send stop...
USISRL = 0x00;
USICNT |= 0x01; // Bit counter = 1, SCL high, SDA low
I2C_State = 10; // Go to next state: generate Stop
break;
case 10:// Generate Stop Condition
USISRL = 0x0FF; // USISRL = 1 to release SDA
USICTL0 |= USIGE; // Transparent latch enabled
USICTL0 &= ~(USIGE+USIOE);// Latch/SDA output disabled
I2C_State = 0; // Reset state machine for next transmission
LPM0_EXIT; // Exit active for next transfer
break;
}
USICTL1 &= ~USIIFG; // Clear pending flag
}
|