MSP430 examples

| June 10, 2018 Updated
MSP430 examples

msp430x24x_01.c – Software Toggle P1.0

msp430x24x_1_vlo.c – Software Toggle P1.0, MCLK = VLO/8

msp430x24x_adc12_01.c – ADC12, Sample A0, Set P1.0 if A0 > 0.5*AVcc

msp430x24x_adc12_02.c – ADC12, Using the Internal Reference

msp430x24x_adc12_03.c – ADC12, Sample A10 Temp, Set P1.0 if Temp ++ ~2C

msp430x24x_adc12_04.c – ADC12, Extend Sampling Period with SHT Bits

msp430x24x_adc12_05.c – ADC12, Using an External Reference

msp430x24x_adc12_06.c – ADC12, Repeated Sequence of Conversions

msp430x24x_adc12_07.c – ADC12, Repeated Single Channel Conversions

msp430x24x_adc12_08.c – ADC12, Using 10 External Channels for Conversion

msp430x24x_adc12_09.c – ADC12, Sequence of Conversions (non-repeated)

msp430x24x_adc12_10.c – ADC12, Sample A10 Temp and Convert to oC and oF

msp430x24x_clks.c – Basic Clock, Output Buffered SMCLK, ACLK, and MCLK

msp430x24x_compA_01.c – Comparator A, Poll input CA0, result in P1.0

msp430x24x_compA_02.c – Comparator A, Poll input CA0, CA exchange, result in P1.0

msp430x24x_compA_04.c – Comparator A, Poll input CA0, result in P1.0

msp430x24x_compA_05.c – Comparator A, Poll input CA0, interrupt triggered

msp430x24x_dc0_flashcal.c – DCO Calibration Constants Programmer

msp430x24x_flashwrite_01.c – Flash In-System Programming, Copy SegC to SegD

msp430x24x_flashwrite_02.c – Flash In-System Programming w/ EEI, Copy SegC to SegD

msp430x24x_flashwrite_03.c – Flash In-System Programming w/ EEI, Copy SegD to A/B/C

msp430x24x_fll_01.c – Basic Clock, Implement Auto RSEL SW FLL

msp430x24x_fll_02.c – Basic Clock, Implement Cont. SW FLL with Auto RSEL

msp430x24x_hfxt2.c – Basic Clock, MCLK Configured to Operate from XT2 HF XTAL

msp430x24x_hfxt2_nmi.c – Basic Clock, MCLK Sourced from HF XTAL XT2, NMI

msp430x24x_lpm3.c – Basic Clock, LPM3 Using WDT ISR, 32kHz ACLK

msp430x24x_lpm3_vlo.c – Basic Clock, LPM3 Using WDT ISR, VLO ACLK

msp430x24x_MPY_01.c – 16×16 Unsigned Multiply

msp430x24x_MPY_02.c – 8×8 Unsigned Multiply

msp430x24x_MPY_03.c – 16×16 Signed Multiply

msp430x24x_MPY_04.c – 8×8 Signed Multiply

msp430x24x_MPY_05.c – 16×16 Unsigned Multiply Accumulate

msp430x24x_MPY_06.c – 8×8 Unsigned Multiply Accumulate

msp430x24x_MPY_07.c – 16×16 Signed Multiply Accumulate

msp430x24x_MPY_08.c – 8×8 Signed Multiply Accumulate

msp430x24x_nmi.c – Configure RST/NMI as NMI

msp430x24x_OF_LFXT1.c – LFXT1 Oscillator Fault Detection

msp430x24x_OF_XT2.c – XT2 Oscillator Fault Detection

msp430x24x_P1_01.c – Software Poll P1.3, Set P1.0 if P1.3 = 1

msp430x24x_P1_02.c – Software Port Interrupt Service on P1.3 from LPM4

msp430x24x_P1_05.c – Write a byte to Port 1

msp430x24x_rosc.c – DCOCLK Biased with External Resistor Rosc

msp430x24x_svs_01.c – SVS, POR @ 2.5V Vcc

msp430x24x_ta_01.c – Timer_A, Toggle P1.0, CCR0 Cont. Mode ISR, DCO SMCLK

msp430x24x_ta_02.c – Timer_A, Toggle P1.0, CCR0 Up Mode ISR, DCO SMCLK

msp430x24x_ta_03.c – Timer_A, Toggle P1.0, Overflow ISR, DCO SMCLK

msp430x24x_ta_04.c – Timer_A, Toggle P1.0, Overflow ISR, 32kHz ACLK

msp430x24x_ta_05.c – Timer_A, Toggle P1.0, CCR0 Up Mode ISR, 32kHz ACLK

msp430x24x_ta_11.c – Timer_A, Toggle P1.1/TA0, Up Mode, 32kHz ACLK

msp430x24x_ta_13.c – Timer_A, Toggle P1.1/TA0, Up/Down Mode, DCO SMCLK

msp430x24x_ta_17.c – Timer_A, PWM TA1-2, Up Mode, 32kHz ACLK

msp430x24x_ta_19.c – Timer_A, PWM TA1-2, Up/Down Mode, DCO SMCLK

msp430x24x_ta_10.c – Timer_A, PWM TA1-2, Up/Down Mode, 32kHz ACLK

msp430x24x_ta_24.c – Timer_A, Toggle P1.0, CCR0 Up Mode ISR, 32kHz INCLK

msp430x24x_tb_01.c – Timer_B, Toggle P1.0, CCR0 Cont. Mode ISR, DCO SMCLK

msp430x24x_tb_02.c – Timer_B, Toggle P1.0, CCR0 Up Mode ISR, DCO SMCLK

msp430x24x_tb_03.c – Timer_B, Toggle P1.0, Overflow ISR, DCO SMCLK

msp430x24x_tb_04.c – Timer_B, Toggle P1.0, Overflow ISR, 32kHz ACLK

msp430x24x_tb_05.c – Timer_B, Toggle P1.0, CCR0 Up Mode ISR, 32kHz ACLK

msp430x24x_tb_06.c – Timer_B, PWM TB1-6, Up Mode, DCO SMCLK

msp430x24x_tb_07.c – Timer_B, PWM TB1-6, Up Mode, 32kHz ACLK

msp430x24x_tb_09.c – Timer_B, PWM TB1-2, Up/Down Mode, DCO SMCLK

msp430x24x_tb_10.c – Timer_B, PWM TB1-2, Up/Down Mode, 32kHz ACLK

msp430x24x_uscia0_irda_01.c – USCI_A0 IrDA External Loopback Test, 8MHz SMCLK

msp430x24x_uscia0_irda_02.c – USCI_A0 IrDA Monitor, 8MHz SMCLK

msp430x24x_uscia0_irda_03.c – USCI_A0 IrDA Physical Layer Comm, 8MHz SMCLK

msp430x24x_uscia0_spi_01.c – USCI_A0, SPI Interface to HC164 Shift Register

msp430x24x_uscia0_spi_02.c – USCI_A0, SPI Interface to HC165 Shift Register

msp430x24x_uscia0_spi_03.c – USCI_A0, SPI Interface to HC165/164 Shift Registers

msp430x24x_uscia0_spi_09.c – USCI_A0, SPI 3-Wire Master Incremented Data

msp430x24x_uscia0_spi_10.c – USCI_A0, SPI 3-Wire Slave Data Echo

msp430x24x_uscia0_uart_01_115k.c – USCI_A0, 115200 UART Echo ISR, DCO SMCLK

msp430x24x_uscia0_uart_01_115k_lpm.c – USCI_A0, 115200 UART Echo ISR, DCO SMCLK, LPM4

msp430x24x_uscia0_uart_01_19200.c – USCI_A0, 19200 UART Echo ISR, DCO SMCLK

msp430x24x_uscia0_uart_01_9600.c – USCI_A0, 9600 UART Echo ISR, DCO SMCLK

msp430x24x_uscia0_uart_04_9600.c – USCI_A0, 9600 UART, SMCLK, LPM0, Echo with over-sampling

msp430x24x_uscia0_uart_05_9600.c – USCI_A0, Ultra-Low Pwr UART 9600 Echo ISR, 32kHz ACLK

msp430x24x_uscia0_uart_06_9600.c – USCI_A0, Ultra-Low Pwr UART 9600 String, 32kHz ACLK

msp430x24x_uscia0_uart_07_9600.c – USCI_A0, Ultra-Low Pwr UART 9600 RX/TX, 32kHz ACLK

msp430x24x_uscia0_uart_08_9600.c – USCI_A0, UART 9600 Full-Duplex Transceiver, 32kHz ACLK

msp430x24x_uscia1_irda_01.c – USCI_A1 IrDA External Loopback Test, 8MHz SMCLK

msp430x24x_uscia1_spi_09.c – USCI_A1, SPI 3-Wire Master Incremented Data

msp430x24x_uscia1_spi_10.c – USCI_A1, SPI 3-Wire Slave Data Echo

msp430x24x_uscia1_uart_05_9600.c – USCI_A1, Ultra-Low Pwr UART 9600 Echo ISR, 32kHz ACLK

msp430x24x_uscib0_i2c_01.c – USCI_B0 I2C Master to TMP100, Set P1.0 if Temp > 28C

msp430x24x_uscib0_i2c_02.c – USCI_B0 I2C Master Interface to PCF8574, Read/Write

msp430x24x_uscib0_i2c_04.c – USCI_B0 I2C Master RX single bytes from MSP430 Slave

msp430x24x_uscib0_i2c_05.c – USCI_B0 I2C Slave TX single bytes to MSP430 Master

msp430x24x_uscib0_i2c_06.c – USCI_B0 I2C Master TX single bytes to MSP430 Slave

msp430x24x_uscib0_i2c_07.c – USCI_B0 I2C Slave RX single bytes from MSP430 Master

msp430x24x_uscib0_i2c_08.c – USCI_B0 I2C Master TX multiple bytes to MSP430 Slave

msp430x24x_uscib0_i2c_09.c – USCI_B0 I2C Slave RX multiple bytes from MSP430 Master

msp430x24x_uscib0_i2c_10.c – USCI_B0 I2C Master RX multiple bytes from MSP430 Slave

msp430x24x_uscib0_i2c_11.c – USCI_B0 I2C Slave TX multiple bytes to MSP430 Master

msp430x24x_uscib0_i2c_15.c – USCI_B0 I2C Slave RX multiple bytes from MSP430 Master & USCI_A1 SPI Slave RX single bytes simultaneously.

msp430x24x_uscib0_spi_01.c – USCI_B0, SPI Interface to TLC549 8-Bit ADC

msp430x24x_uscib0_spi_02.c – USCI_B0, SPI Interface to TLV1549 10-Bit ADC

msp430x24x_uscib0_spi_09.c – USCI_B0, SPI 3-Wire Master Incremented Data

msp430x24x_uscib0_spi_10.c – USCI_B0, SPI 3-Wire Slave Data Echo

msp430x24x_uscib1_i2c_06.c – USCI_B1 I2C Master TX single bytes to MSP430 Slave

msp430x24x_uscib1_i2c_07.c – USCI_B1 I2C Slave RX single bytes from MSP430 Master

msp430x24x_uscib1_spi_09.c – USCI_B1, SPI 3-Wire Master Incremented Data

msp430x24x_uscib1_spi_10.c – USCI_B1, SPI 3-Wire Slave Data Echo

msp430x24x_wdt_01.c – WDT, Toggle P1.0, Interval Overflow ISR, DCO SMCLK

msp430x24x_wdt_02.c – WDT, Toggle P1.0, Interval Overflow ISR, 32kHz ACLK

msp430x24x_wdt_04.c – WDT+ Failsafe Clock, WDT mode, DCO SMCLK

msp430x24x_wdt_05.c – Reset on Invalid Address fetch, Toggle P1.0

msp430x24x_wdt_06.c – WDT+ Failsafe Clock, 32kHz ACLK

Published: 2010/10/17 Tags: , ,



1 Comment “MSP430 examples

  1. Electronics CircuitsElectronics Circuits

    Digital PLL controlled FM Radio Circuit TEA5767 Receiver PIC16F628

    Yes, let’s recent project, a “Digital and PLL controlled FM Radio Receiver System” will give. Some of them may sound like a simple project. But a very open system development project. Currently on the market that has all the features of most modern radio despite the limited resources, why did the simplistic with this project. This is a fully digital PLL controlled FM radio project.

    Digital PLL controlled FM Radio Proteus isis circuit

    REPLY

Leave a Reply

Your email address will not be published. Required fields are marked *

 

Comment moderation is enabled. Your comment may take some time to appear.